CHEMISTRY

PROFILE

Vision

• The vision of the department is to make the students research-oriented, employable, and enable them to become confident and competent with better comprehension and applications

mission

• Projects are introduced in V and VI semester B.Sc. to motivate students towards research. The syllabi is industry oriented. Certificate courses, seminars, PowerPoint presentations, discussions etc., are an integral part of the curriculum to boost the self-confidence of the students.

COURSE OUTCOME

SEMESTER/ TITLE OF THE COURSE LEARNING OUTCOME PROGRAM SPECIFIC OUTCOME
I Semester- CHE 1.1

Chemistry I
•Explain the fundamental properties of atoms, molecules, the electronic structure of atoms and its influence on chemical properties ,molecular geometries of selected molecular species, the basic (colligative) properties of solutions

• Discuss the principles of organic chemistry that include chemical bonding, nomenclature, structural isomerism, stereochemistry, chemical reactions and mechanism

• Explain the functional groups and different class of organic compounds • Discuss the structures and properties of organic and biomolecular species.

• Explain nucleophiles, electrophiles, electronegativity, and resonance

• Describe the hybridization and geometry of atoms and the three-dimensional structure of organic molecules

• Demonstrate proper laboratory safety and techniques and expression of the results of their experiments
At the end of the three year program in History the students will able to:

• Describe the social, economic, political, religious and cultural interests in a comprehensive study of the past.

•Acquire knowledge of historical texts, sources and how historians interpret past.

• Understand the basic themes, concepts, chronology and the Scope of Indian History

• Compare and contrast the major dynasties, art, architecture and literature of Karnataka

• Explain the positive and negative impacts of travel and tourism and the importance of sustainability

• Compare and contrast the history of the countries other than India (China, Japan and Europe)
II Semester - CHE 2.1

Chemistry II
• Explain simple quantum mechanical treatments of atoms and molecules

• Demonstrate the ability to write electronic configurations, orbital diagrams, Lewis electron dot formula, and quantum numbers for electrons in the ground state

• Demonstrate the ability to balance simple ionic compounds using the information how quantum mechanics apply to the charges on metals and nonmetals and predict molecular geometries of selected molecular species using the Octet rule

• Explain the fundamentals of electronic structure and bonding in conjugated and aromatic systems
III Semester- CHE 3.1

Chemistry III
• Demonstrate the ability to carry out organic reactions and prepare their solutions, recognize the basic practical skills for the synthesis and analysis of organic compounds.

• Evaluate data collected to determine the identity, purity, and yield of products.

• Perform common laboratory techniqueslike reflux, distillation, steam distillation, recrystallization, vacuum filtration, aqueous extraction, thin layer chromatography, column chromatography.

• Explain the application of laws of thermodynamics.

• Discuss the applications of catalyst in water treatment, dyedegradation and industrial application.

• Discuss the principles of extraction of metals from its ores and applications of metallurgy in daily life.
IV Semester- CHE 4.1

Chemistry IV
• Calculate the oxidation states of elements in compounds that have variable oxidation states

• Explain the nomenclature for nonmetals bonded to nonmetals, for transition elements in compounds, and oxy-acids and their salts.

• Discuss the fundamental electronic structure and bonding in carbonyl compounds.

• Explain the substituent effects on pKa (in t)

• Describe the reactivity of carbonyl compounds with both hard and soft nucleophiles (carboxylic acids, aldehydes and ketones).

• Explain the concepts in thermodynamics, different thermodynamic quantities such as heat and work and how they are measured, related or transformed from one to the other.

• Explain states of matter and how they depend on temperature and pressure as well as how they co-exist in phase equilibria.

• Explain chemical equilibrium and its relationship with thermodynamic quantities ,Structures of ionic solids and defects and their applications
V Semester- CHE 5.1

Chemistry V and Organic Chemistry
• Explain the reactivity and stability of an organic molecule based on structure, including conformation and stereochemistry

• Apply the understanding of organic mechanisms to predict.

• Design syntheses of organic molecules.

• Determine the structure of organic molecules using IR and NMR spectroscopic techniques.

• Characterize and elucidate the structure of organic molecules by physical and spectroscopic means, including mp, bp, IR, NMR, GC

• Explain the fundamental properties and reactivity of biologically important molecules (e.g. carbohydrates, amines and amino-acids)

• Demonstrate the basic practical skills for the synthesis and analysis of organic compounds.
CHE 5.2

Chemistry V I Physical Chemistry
• Explain the fundamentals of acid/base equilibria, including pH calculations, buffer behavior, acid/base titrations.

• Describe the thermodynamic and kinetic forces involved in chemical reactions.

• Explain the basics of electrochemistry and the relationship of electrical parameters to thermodynamic and stoichiometric parameters.

• Restate the general chemical equilibria, solubility and complex ion equilibria, the application of Beer-Lamberts Law.

• Differentiate between thermal and photochemical processes.

• Describe the Jablonski diagram to depict the reactions at excited state.

• Recall the basic concepts in spectroscopy, Concept of electronic spectra, potential energy curve.
VI Semester CHE 6.1

Chemistry – VII Inorganic Chemistry
• Explain the facts, concepts, structures, classification systems and language associated with silicates.

• Demonstrate theoretical and practical knowledge related to modern materials chemistry, materials nanotechnology.

• Describe the synthesis of nanoparticles and their characterization using varies techniques.

• Describe the ligand strengths by the stability of the complexes and precipitates formed by the ligands with a given metal ion.

• Discuss the application of organometallic compounds in our day to day to day to life.

• List out the industrial materials and their applications in advanced era.

• Tell the Classification, properties, preparation of explosives.

• Describe the advantages of organic reagents in gravimetric and colorimetric analysis.

• Explain the applications of flame photometry, thermo gravimetric analysis.
CHE 6.2

Chenistry -VIII Biochemistry
• Explain the the synthesis of proteins, lipids, nucleic acids, and carbohydrates and their role in metabolic pathways along with their regulation at the epigenetic, transcriptional, translational, and post-translational levels including RNA and protein folding, modification, and degradation.

• Describe the Regulation by non-coding RNAs and their role in the developmental and physiological functioning of the organism.

• Perform common laboratory techniques like pH measurement, acid/base titrations, UV/Visible spectroscopy in both emission and absorption mode, calorimetry, and colorimetry
SEMESTER/ TITLE OF THE COURSE LEARNING OUTCOME
I Semester- CHE 1.1

Chemistry I
•Explain the fundamental properties of atoms, molecules, the electronic structure of atoms and its influence on chemical properties ,molecular geometries of selected molecular species, the basic (colligative) properties of solutions

• Discuss the principles of organic chemistry that include chemical bonding, nomenclature, structural isomerism, stereochemistry, chemical reactions and mechanism

• Explain the functional groups and different class of organic compounds • Discuss the structures and properties of organic and biomolecular species.

• Explain nucleophiles, electrophiles, electronegativity, and resonance

• Describe the hybridization and geometry of atoms and the three-dimensional structure of organic molecules

• Demonstrate proper laboratory safety and techniques and expression of the results of their experiments
II Semester - CHE 2.1

Chemistry II
• Explain simple quantum mechanical treatments of atoms and molecules

• Demonstrate the ability to write electronic configurations, orbital diagrams, Lewis electron dot formula, and quantum numbers for electrons in the ground state

• Demonstrate the ability to balance simple ionic compounds using the information how quantum mechanics apply to the charges on metals and nonmetals and predict molecular geometries of selected molecular species using the Octet rule

• Explain the fundamentals of electronic structure and bonding in conjugated and aromatic systems
III Semester- CHE 3.1

Chemistry III
• Demonstrate the ability to carry out organic reactions and prepare their solutions, recognize the basic practical skills for the synthesis and analysis of organic compounds.

• Evaluate data collected to determine the identity, purity, and yield of products.

• Perform common laboratory techniqueslike reflux, distillation, steam distillation, recrystallization, vacuum filtration, aqueous extraction, thin layer chromatography, column chromatography.

• Explain the application of laws of thermodynamics.

• Discuss the applications of catalyst in water treatment, dyedegradation and industrial application.

• Discuss the principles of extraction of metals from its ores and applications of metallurgy in daily life.
IV Semester- CHE 4.1

Chemistry IV
• Calculate the oxidation states of elements in compounds that have variable oxidation states

• Explain the nomenclature for nonmetals bonded to nonmetals, for transition elements in compounds, and oxy-acids and their salts.

• Discuss the fundamental electronic structure and bonding in carbonyl compounds.

• Explain the substituent effects on pKa (in t)

• Describe the reactivity of carbonyl compounds with both hard and soft nucleophiles (carboxylic acids, aldehydes and ketones).

• Explain the concepts in thermodynamics, different thermodynamic quantities such as heat and work and how they are measured, related or transformed from one to the other.

• Explain states of matter and how they depend on temperature and pressure as well as how they co-exist in phase equilibria.

• Explain chemical equilibrium and its relationship with thermodynamic quantities ,Structures of ionic solids and defects and their applications
V Semester- CHE 5.1

Chemistry V and Organic Chemistry
• Explain the reactivity and stability of an organic molecule based on structure, including conformation and stereochemistry

• Apply the understanding of organic mechanisms to predict.

• Design syntheses of organic molecules.

• Determine the structure of organic molecules using IR and NMR spectroscopic techniques.

• Characterize and elucidate the structure of organic molecules by physical and spectroscopic means, including mp, bp, IR, NMR, GC

• Explain the fundamental properties and reactivity of biologically important molecules (e.g. carbohydrates, amines and amino-acids)

• Demonstrate the basic practical skills for the synthesis and analysis of organic compounds.
CHE 5.2

Chemistry V I Physical Chemistry
• Explain the fundamentals of acid/base equilibria, including pH calculations, buffer behavior, acid/base titrations.

• Describe the thermodynamic and kinetic forces involved in chemical reactions.

• Explain the basics of electrochemistry and the relationship of electrical parameters to thermodynamic and stoichiometric parameters.

• Restate the general chemical equilibria, solubility and complex ion equilibria, the application of Beer-Lamberts Law.

• Differentiate between thermal and photochemical processes.

• Describe the Jablonski diagram to depict the reactions at excited state.

• Recall the basic concepts in spectroscopy, Concept of electronic spectra, potential energy curve.
VI Semester CHE 6.1

Chemistry – VII Inorganic Chemistry
• Explain the facts, concepts, structures, classification systems and language associated with silicates.

• Demonstrate theoretical and practical knowledge related to modern materials chemistry, materials nanotechnology.

• Describe the synthesis of nanoparticles and their characterization using varies techniques.

• Describe the ligand strengths by the stability of the complexes and precipitates formed by the ligands with a given metal ion.

• Discuss the application of organometallic compounds in our day to day to day to life.

• List out the industrial materials and their applications in advanced era.

• Tell the Classification, properties, preparation of explosives.

• Describe the advantages of organic reagents in gravimetric and colorimetric analysis.

• Explain the applications of flame photometry, thermo gravimetric analysis.
CHE 6.2

Chenistry -VIII Biochemistry
• Explain the the synthesis of proteins, lipids, nucleic acids, and carbohydrates and their role in metabolic pathways along with their regulation at the epigenetic, transcriptional, translational, and post-translational levels including RNA and protein folding, modification, and degradation.

• Describe the Regulation by non-coding RNAs and their role in the developmental and physiological functioning of the organism.

• Perform common laboratory techniques like pH measurement, acid/base titrations, UV/Visible spectroscopy in both emission and absorption mode, calorimetry, and colorimetry
PROGRAM SPECIFIC OUTCOME
At the end of the three year program in History the students will able to:
• Describe the social, economic, political, religious and cultural interests in a comprehensive study of the past.

•Acquire knowledge of historical texts, sources and how historians interpret past.

• Understand the basic themes, concepts, chronology and the Scope of Indian History

• Compare and contrast the major dynasties, art, architecture and literature of Karnataka

• Explain the positive and negative impacts of travel and tourism and the importance of sustainability

• Compare and contrast the history of the countries other than India (China, Japan and Europe)

LABORATORY

FACULTY

Mrs. Shilpa P

Assistant Professor

M.Sc., M.Phil
Shilpap.nmkrv@rvei.edu.in

Mrs. Suparna K

Assistant Professor

MSc NET
suparnak.nmkrv@rvei.edu.in

Dr. Santhosh A S

Assistant Professor

M.Sc., B.Ed., Ph.D.
santhoshas.nmkrv@rvei.edu.in

Dr. Shruthi C D

Assistant Professor

M.Sc., Ph.D.
shruthicd.nmkrv@rvei.edu.in

Dr. Shridevi Salagare

Assistant Professor

M.Sc., B.Ed., Ph.D.